Coupled Systems: Theory & Examples

Lecture 3

Linear Degeneracies and Unusual Bifurcations

Martin Golubitsky Department of Mathematics University of Houston http://www.math.uh.edu/~mg/

Thanks

Ian Stewart		Warwick
Toby Elmhirst	UBC	
Maria Leite	Purdue	
Matthew Nicol	Houston	
Marcus Pivato	Trent	
Yunjiao Wang	Houston	

Homogeneous Three Cell Networks

• a_{ij} = number of inputs cell *i* receives from cell *j*

- 3×3 matrix $A = (a_{ij})$ is adjacency matrix
- Valency = n = total number of inputs per cell

$$a_{i1} + a_{i2} + a_{i3} = n$$
 for $j = 1, 2, 3$

34 homogeneous three-cell valency 2 networks

Leite and G. (2005)

Network 14: Complex Eigenvalues (1)

- $\dot{x}_{1} = f(x_{1}, \overline{x_{3}, x_{3}})$ $\dot{x}_{2} = f(x_{2}, \overline{x_{1}, x_{1}})$ $\dot{x}_{3} = f(x_{3}, \overline{x_{1}, x_{2}})$ $J = \begin{bmatrix} \alpha & 0 & 2\beta \\ 2\beta & \alpha & 0 \\ \beta & \beta & \alpha \end{bmatrix} = \alpha I + \beta \begin{bmatrix} 0 & 0 & 2 \\ 2 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$
- Eigenvalues: $\alpha + 2\beta$ $\alpha (1 \pm i)\beta$
- Eigenvectors: (1, 1, 1) $(1, -(1 \mp i), -\frac{1 \pm i}{2})$

Network 14: Complex Eigenvalues (2)

Synchrony breaking eigenvector: $(1, -(1+i), -\frac{1+i}{2})$

Synchrony-Breaking Bifurcations

Simple complex (no zero) eigenvalues: 2, 14, 18, 19, 24

Leite and G. (2005)

2

Synchrony-Breaking Bifurcations

Simple complex (no zero) eigenvalues: 2, 14, 18, 19, 24

Double with two synch-breaking eigenvectors: 4, 7, 8

- Double with synchrony preserving eigenvector: 12
- Nilpotent: 3; 6, 11, 27, 28

Synchrony-Breaking Bifurcations

Simple complex (no zero) eigenvalues: 2, 14, 18, 19, 24

Double with two synch-breaking eigenvectors: 4, 7, 8

Double with synchrony preserving eigenvector: 12

Nilpotent: 3; 6, 11, 27, 28

Remaining 20 networks have simple eigenvalues Leite and G. (2005)

Three-Cell Feed-Forward Network

G., Nicol, and Stewart (2004); Elmhirst and G. (2005)

Three-Cell Feed-Forward Network

Network supports solution by Hopf bifurcation where $x_1(t)$ equilibrium $x_2(t), x_3(t)$ time periodic

G., Nicol, and Stewart (2004); Elmhirst and G. (2005)

 $x_2(t) \approx \lambda^{1/2}$

 $x_3(t) pprox \lambda^{1/6}$

- p. 8/3

Feed Forward: $\frac{1}{6}$ th Power Growth Rate $\mathbf{f}(\mathbf{u}, \mathbf{v}) = (\lambda + \mathbf{i} - |\mathbf{u}|^2)\mathbf{u} - \mathbf{v}; \mathbf{u}, \mathbf{v} \in \mathbf{C}$

$$\dot{x}_1 = f(x_1, x_1) = (\lambda + i - |x_1|^2)x_1 - x_1$$

$$\dot{x}_2 = f(x_2, x_1) = (\lambda + i - |x_2|^2)x_2 - x_1$$

$$\dot{x}_3 = f(x_3, x_2) = (\lambda + i - |x_3|^2)x_3 - x_2$$

$$\mathbf{f}(\mathbf{u},\mathbf{v}) = (\lambda + \mathbf{i} - |\mathbf{u}|^2)\mathbf{u} - \mathbf{v}; \mathbf{u}, \mathbf{v} \in \mathbf{C}$$

$$\dot{x}_1 = f(x_1, x_1) = (\lambda + i - |x_1|^2)x_1 - x_1$$

 $x_1 = 0$ is a stable equilibrium for $\lambda < 1$

$$\dot{x}_2 = f(x_2, x_1) = (\lambda + i - |x_2|^2)x_2 - x_1$$

$$\dot{x}_3 = f(x_3, x_2) = (\lambda + i - |x_3|^2)x_3 - x_2$$

$$\mathbf{f}(\mathbf{u},\mathbf{v}) = (\lambda + \mathbf{i} - |\mathbf{u}|^2)\mathbf{u} - \mathbf{v}; \mathbf{u}, \mathbf{v} \in \mathbf{C}$$

 $x_1 = 0$ is a stable equilibrium for $\lambda < 1$

$$\dot{x}_2 = f(x_2, x_1) = (\lambda + i - |x_2|^2)x_2 - x_1$$

$$\dot{x}_2 = f(x_2, 0) = (\lambda + i - |x_2|^2)x_2$$

$$\dot{x}_3 = f(x_3, x_2) = (\lambda + i - |x_3|^2)x_3 - x_2$$

$$\mathbf{f}(\mathbf{u},\mathbf{v}) = (\lambda + \mathbf{i} - |\mathbf{u}|^2)\mathbf{u} - \mathbf{v}; \mathbf{u}, \mathbf{v} \in \mathbf{C}$$

 $x_1 = 0$ is a stable equilibrium for $\lambda < 1$

$$\dot{x}_2 = f(x_2, x_1) = (\lambda + i - |x_2|^2)x_2 - x_1$$

$$\dot{x}_2 = f(x_2, 0) = (\lambda + i - |x_2|^2)x_2$$

 $x_2(t) = \sqrt{\lambda}e^{it}$ is stable periodic solution for $0 < \lambda < 1$ $\dot{x}_3 = f(x_3, x_2) = (\lambda + i - |x_3|^2)x_3 - x_2$

$$\mathbf{f}(\mathbf{u},\mathbf{v}) = (\lambda + \mathbf{i} - |\mathbf{u}|^2)\mathbf{u} - \mathbf{v}; \mathbf{u}, \mathbf{v} \in \mathbf{C}$$

 $x_1 = 0$ is a stable equilibrium for $\lambda < 1$ $x_2(t) = \sqrt{\lambda}e^{it}$ is stable periodic solution for $0 < \lambda < 1$

$$\dot{x}_3 = f(x_3, x_2) = (\lambda + i - |x_3|^2)x_3 - x_2$$

 $\dot{x}_3 = f(x_3, \sqrt{\lambda}e^{it}) = (\lambda + i - |x_3|^2)x_3 - \sqrt{\lambda}e^{it}$

F.F. Ex.
$$f(u, v) = (\lambda + i - |u|^2)u - v$$

$$\dot{x}_3 = (\lambda + i - |x_3|^2)x_3 - \sqrt{\lambda}e^{it}$$

F.F. Ex.
$$f(u, v) = (\lambda + i - |u|^2)u - v$$

$$\dot{x}_3 = (\lambda + i - |x_3|^2)x_3 - \sqrt{\lambda}e^{it}$$

Set $x_3 = ye^{it}$

F.F. Ex.
$$f(u, v) = (\lambda + i - |u|^2)u - v$$

$$\dot{x}_3 = (\lambda + i - |x_3|^2)x_3 - \sqrt{\lambda}e^{it}$$

 $x_3(t) = y(t)e^{it}$

$$\dot{y}e^{it} + yie^{it} = (\lambda + i - |y|^2)ye^{it} - \sqrt{\lambda}e^{it}$$

F.F. Ex.
$$f(u, v) = (\lambda + i - |u|^2)u - v$$

$$\dot{x}_3 = (\lambda + i - |x_3|^2)x_3 - \sqrt{\lambda}e^{it}$$

 $y(t)e^{it}$

 $x_3(t) =$

$$\dot{y}e^{it} + yie^{it} = (\lambda + i - |y|^2)ye^{it} - \sqrt{\lambda}e^{it}$$

$$\dot{y} \boxed{e^{it}} + yi \boxed{e^{it}} = (\lambda + i - |y|^2) y \boxed{e^{it}} - \sqrt{\lambda} \boxed{e^{it}}$$

F.F. Ex.
$$f(u, v) = (\lambda + i - |u|^2)u - v$$

$$\dot{x}_3 = (\lambda + i - |x_3|^2)x_3 - \sqrt{\lambda}e^{it}$$
$$x_3(t) = y(t)e^{it}$$
$$\dot{y}e^{it} + yie^{it} = (\lambda + i - |y|^2)ye^{it} - \sqrt{\lambda}e^{it}$$
$$\dot{y}e^{it} + yie^{it} = (\lambda + i - |y|^2)ye^{it} - \sqrt{\lambda}e^{it}$$

$$\dot{y} + yi = (\lambda + i - |y|^2)y - \sqrt{\lambda}$$

F.F. Ex.
$$f(u, v) = (\lambda + i - |u|^2)u - v$$

$$\dot{x}_3 = (\lambda + i - |x_3|^2)x_3 - \sqrt{\lambda}e^{it}$$
$$x_3(t) = y(t)e^{it}$$

$$\dot{y} + yi = (\lambda + i - |y|^2)y - \sqrt{\lambda}$$

$$\dot{y} + \boxed{yi} = (\lambda + \boxed{i} - |y|^2)y - \sqrt{\lambda}$$

F.F. Ex.
$$f(u, v) = (\lambda + i - |u|^2)u - v$$

$$\dot{x}_3 = (\lambda + i - |x_3|^2)x_3 - \sqrt{\lambda}e^{it}$$

 $x_3(t) = y(t)e^{it}$

$$\dot{y} = (\lambda - |y|^2)y - \sqrt{\lambda}$$

F.F. Ex.
$$f(u, v) = (\lambda + i - |u|^2)u - v$$

$$\dot{y} = (\lambda - |y|^2)y - \sqrt{\lambda}$$

F.F. Ex.
$$f(u, v) = (\lambda + i - |u|^2)u - v$$

$$\dot{y} = (\lambda - |y|^2)y - \sqrt{\lambda}$$

Set $y = \lambda^{\frac{1}{6}} u$

F.F. Ex.
$$f(u, v) = (\lambda + i - |u|^2)u - v$$

$$\dot{y} = (\lambda - |y|^2)y - \sqrt{\lambda}$$

 $y(t) = \lambda^{\frac{1}{6}} u(t)$

$$\lambda^{\frac{1}{6}} \dot{u} = (\lambda^{\frac{6}{6}} - \lambda^{\frac{2}{6}} |u|^2) \lambda^{\frac{1}{6}} u - \lambda^{\frac{3}{6}} \\ = \lambda^{\frac{3}{6}} \left\{ \lambda^{\frac{4}{6}} - (|u|^2 u + 1) \right\}$$

F.F. Ex.
$$f(u, v) = (\lambda + i - |u|^2)u - v$$

$$\dot{u} = -\lambda^{\frac{1}{3}} \left\{ (|u|^2 u + 1) + \lambda^{\frac{2}{3}} u \right\}$$

F.F. Ex.
$$f(u, v) = (\lambda + i - |u|^2)u - v$$

$$\dot{u} = -\lambda^{\frac{1}{3}} \left\{ (|u|^2 u + 1) + \lambda^{\frac{2}{3}} u \right\}$$

Solve $\dot{u} = 0$ for equilibria

$$-(|u|^2u+1) + \lambda^{\frac{2}{3}}u = 0$$

F.F. Ex.
$$f(u, v) = (\lambda + i - |u|^2)u - v$$

$$\dot{u} = -\lambda^{\frac{1}{3}} \left\{ (|u|^2 u + 1) + \lambda^{\frac{2}{3}} u \right\}$$

Solve $\dot{u} = 0$ for equilibria

$$-(|u|^2u+1) + \lambda^{\frac{2}{3}}u = 0$$

Use IFT to obtain branch of (stable) equilibria

$$u_0(\lambda) = -1 + O(\lambda^{\frac{2}{3}})$$

F.F. Ex.
$$f(u, v) = (\lambda + i - |u|^2)u - v$$

$$\dot{u} = -\lambda^{\frac{1}{3}} \left\{ (|u|^2 u + 1) + \lambda^{\frac{2}{3}} u \right\}$$

$$u_0(\lambda) = -1 + O(\lambda^{\frac{2}{3}})$$

Thus $x_3(t)$ is periodic with same period as $x_2(t)$

$$x_3(t) = y(t)e^{it} = \lambda^{\frac{1}{6}}u(t)e^{it} \to \lambda^{\frac{1}{6}}u_0(\lambda)e^{it} = -\lambda^{\frac{1}{6}}e^{it} + O(\lambda^{\frac{5}{6}})$$

Feed-Forward Suggests ...

- Tune λ so that the feed-forward network is slightly subcritical; that is, the origin is stable
- Periodically force the first equation through the coupling

$$\dot{x}_1 = f(x_1, \varepsilon g(\omega_F t), \lambda)$$

- How does amplitude of cell 3 grow with ε ?
- Guess:
 - $\varepsilon^{\frac{1}{6}}$ when frequency ω_F is near ω_H
 - ε when frequency ω_F is far from ω_H

McCullen-Mullin Experiment (1)

McCullen-Mullin Experiment (2)

Numerics with Aronson

FM Switch — Broomhead

Tuned to Frequency 1

Tuned to Frequency 2

• E'values of $\alpha + 2\beta$ ($[x, x, x]^t$), α ($[x, -x, -x]^t$), α

• E'values of $\alpha + 2\beta$ ($[x, x, x]^t$), α ($[x, -x, -x]^t$), α • $x_2 = x_3$ is synchrony subspace $1 \xrightarrow{1} 2$

- E'values of $\alpha + 2\beta$ ($[x, x, x]^t$), α ($[x, -x, -x]^t$), α
- $x_2 = x_3$ is synchrony subspace (1) (2)

• $(x_1, x_2) \mapsto (x_2, x_1)$ is a symmetry on $x_2 = x_3$

- E'values of $\alpha + 2\beta$ ($[x, x, x]^t$), α ($[x, -x, -x]^t$), α • $x_2 = x_3$ is synchrony subspace 1
- $(x_1, x_2) \mapsto (x_2, x_1)$ is a symmetry on $x_2 = x_3$
- Hopf bifurcation in $x_2 = x_3$ plane: $x_3(t) = x_2(t + \frac{1}{2})$

- E'values of $\alpha + 2\beta$ ($[x, x, x]^t$), α ($[x, -x, -x]^t$), α • $x_2 = x_3$ is synchrony subspace $1 \xrightarrow{1} 2$
- $(x_1, x_2) \mapsto (x_2, x_1)$ is a symmetry on $x_2 = x_3$
- Hopf bifurcation in $x_2 = x_3$ plane: $x_3(t) = x_2(t + \frac{1}{2})$
- 2 or 4 branches of periodic solutions depends on terms up to degree 5 in f all branches have amplitude growth rate $\lambda^{\frac{1}{2}}$

Nilpotent Hopf

Five-cell network: nilpotent Hopf generically leads to two periodic solutions with amplitude growth of λ

Nilpotent Hopf Proof

• Look for small amplitude near 2π -periodic solutions to

$$\dot{x} = F(x, \lambda),$$

where $F(0,\lambda) = 0$ and $(dF)_{0,0}$ has e'values $\pm i$

Nilpotent Hopf Proof

• Look for small amplitude near 2π -periodic solutions to

$$\dot{x} = F(x, \lambda),$$

where $F(0,\lambda) = 0$ and $(dF)_{0,0}$ has e'values $\pm i$

• Periodic solutions are near 2π -periodic; set $s = (1 + \tau)t$

$$(1+\tau)\frac{dx}{ds} = F(x,\lambda).$$

and solve for exactly 2π periodic solutions.

Nilpotent Hopf Proof

• Look for small amplitude near 2π -periodic solutions to

$$\dot{x} = F(x, \lambda),$$

where $F(0,\lambda) = 0$ and $(dF)_{0,0}$ has e'values $\pm i$

Periodic solutions are near 2π -periodic; set $s = (1 + \tau)t$

$$(1+\tau)\frac{dx}{ds} = F(x,\lambda).$$

and solve for exactly 2π periodic solutions.

• Define $\Phi: \mathcal{C}_{2\pi}^1 \times \mathbf{R} \times \mathbf{R} \to \mathcal{C}_{2\pi}$ by

$$\Phi(x,\lambda,\tau) = (1+\tau)\frac{dx}{ds} - F(x,\lambda); \qquad \Phi(0,\lambda,\tau) = 0$$

Nilpotent Hopf Proof (2)

• Φ is S¹-equivariant where $(\theta \cdot u)(s) = u(s - \theta)$

 $\dim \ker(d\Phi)_0 = 2$

Nilpotent Hopf Proof (2)

• Φ is S¹-equivariant where $(\theta \cdot u)(s) = u(s - \theta)$

 $\dim \ker(d\Phi)_0 = 2$

• L-S reduction to $\varphi : \mathbf{C} \times \mathbf{R} \times \mathbf{R} \to \mathbf{C}$ where

$$\varphi(e^{i\theta}z,\lambda,\tau) = e^{i\theta}\varphi(z,\lambda,\tau)$$

Let $u = |z|^2$. Then

 $\varphi(z,\lambda,\tau) = p(u,\lambda,\tau)z + q(u,\lambda,\tau)iz$

where p(0) = q(0) = 0. $q_{\tau}(0) = -1$ in generic Hopf

Nilpotent Hopf Proof (3)

Nilpotence implies

$$p_{\lambda}(0) = p_{\tau}(0) = q_{\lambda}(0) = q_{\tau}(0) = 0$$

Nilpotent Hopf Proof (3)

Nilpotence implies

$$p_{\lambda}(0) = p_{\tau}(0) = q_{\lambda}(0) = q_{\tau}(0) = 0$$

Nilpotent Hopf bifurcation with critical eigenvalues of algebraic multiplicity two

 $p(0,\lambda,\tau) = \lambda^2 - \tau^2 + \cdots$ and $q(0,\lambda,\tau) = -2\lambda\tau + \cdots$

Nilpotent Hopf Proof (3)

Nilpotence implies

$$p_{\lambda}(0) = p_{\tau}(0) = q_{\lambda}(0) = q_{\tau}(0) = 0$$

Nilpotent Hopf bifurcation with critical eigenvalues of algebraic multiplicity two

 $p(0, \lambda, \tau) = \lambda^2 - \tau^2 + \cdots$ and $q(0, \lambda, \tau) = -2\lambda\tau + \cdots$

$$p(u,0,0) = u^m + \cdots$$

	m	# solutions	growth rate
••	1	2	λ
	2	2 or 4	$\lambda^{rac{1}{2}}$
	4	2	$\lambda^{rac{1}{2}}$ $\lambda^{rac{1}{6}}$

General Bifurcation Theorems

- Bifurcation to two-color solutions
- Interior symmetries

Bifurcation to Two-Color Solutions

- For each balanced two-coloring in a homogeneous network there is a codimension one bifurcation from a synchronous zero to a branch of two-colored zeros
- Quotient network for balanced two-coloring is $m_1 = m_2$

В

Homogeneous implies $k \equiv l_1 + m_1 = l_2 + m_2$

Quotient system has form

$$\begin{aligned} \dot{x_1} &= f(x_1, \underbrace{\overline{x_1, \cdots, x_1}}_{l_1 \text{ times}}, \underbrace{\overline{x_2, \cdots, x_2}}_{m_1 \text{ times}}, \lambda) \\ \dot{x_2} &= f(x_2, \underbrace{\overline{x_2, \cdots, x_2}}_{l_2 \text{ times}}, \underbrace{\overline{x_1, \cdots, x_1}}_{m_2 \text{ times}}, \lambda) \end{aligned} \qquad J = \left(\begin{array}{cc} \alpha + l_1 \beta & m_1 \beta \\ m_2 \beta & \alpha + l_2 \beta \end{array} \right)$$

W

Bifurcation to Two-Color Solutions (2)

$$J = \begin{pmatrix} \alpha + l_1 \beta & m_1 \beta \\ m_2 \beta & \alpha + l_2 \beta \end{pmatrix}$$

• Eigenvalues of *J* are eigenvalues of matrices $\alpha + k\beta$ and $\alpha + (l_1 + l_2 - k)\beta$

Let v be eigenvector of $\alpha + (l_1 + l_2 - k)\beta$; then $(m_1v, -m_2v)^t$ is eigenvector of J.

- $\alpha + (l_1 + l_2 k)\beta$ can have simple real eigenvalue crossing zero with nonzero speed.
- Then there exists unique branch of nontrivial solutions to f = 0 satisfying $x_1 \neq x_2$

Interior Symmetries

• Let σ permute cells. σ is a symmetry iff $\forall j$

 $\sigma|_{I(j)}: I(j) \to I(\sigma(j))$ is an input isomorphism (1)

- $\textbf{ } \mathcal{S} \subseteq \mathcal{C} \text{ is subset of cells. } \sigma \text{ is an interior symmetry on } \mathcal{S} \text{ if }$
 - $\, {}_{{\color{black} \bullet}} \,$ is the identity on ${\mathcal C} \setminus {\mathcal S},$ and
 - satisfies (1) for every $j \in \mathcal{S}$
- $\Sigma_{\mathcal{S}}$ is the group of interior symmetries on \mathcal{S}

 $\mathcal{S} = \{1, 2, 3\}$ $\Sigma_{\mathcal{S}} = \mathbf{Z}_3$

Synchrony Breaking: Linear

- $\operatorname{Fix}(\Sigma_{\mathcal{S}}) = \operatorname{Fix}_{\mathcal{S}}(\Sigma_{\mathcal{S}}) \cup "\mathcal{C} \setminus \mathcal{S}"$ is flow-invariant
- Let W consist of vectors that are 0 on $C \setminus S$ and whose coordinates sum to 0 on orbits of S acting on C.

In example $W = \{(x_1, x_2, x_3, 0) : x_1 + x_2 + x_3 = 0\}$

• W is $\Sigma_{\mathcal{S}}$ -invariant and phase space is $W \oplus \operatorname{Fix}(\Sigma_{\mathcal{S}})$

Synchrony Breaking: Linear

- $\operatorname{Fix}(\Sigma_{\mathcal{S}}) = \operatorname{Fix}_{\mathcal{S}}(\Sigma_{\mathcal{S}}) \cup "\mathcal{C} \setminus \mathcal{S}"$ is flow-invariant
- Let W consist of vectors that are 0 on $C \setminus S$ and whose coordinates sum to 0 on orbits of S acting on C.

In example $W = \{(x_1, x_2, x_3, 0) : x_1 + x_2 + x_3 = 0\}$

- W is $\Sigma_{\mathcal{S}}$ -invariant and phase space is $W \oplus \operatorname{Fix}(\Sigma_{\mathcal{S}})$
- Let X_0 be an $\Sigma_{\mathcal{S}}$ -invariant equilibrium
- Synchrony space $Fix(\Sigma_{\mathcal{S}})$ is invariant under $(DF)_{X_0}$; so

$$(DF)_{X_0} = \left[\begin{array}{cc} A & 0 \\ C & B \end{array} \right]$$

where $A: W \to W$ commutes with $\Sigma_{\mathcal{S}}$

• Critical e'value of $A \implies$ synchrony-breaking bifurcation

Synchrony Breaking: Nonlinear

 Assume synchrony-breaking Hopf bifurcation occurs. Let

 $\Delta \subset \Sigma_{\mathcal{S}} \times \mathbf{S}^1 \quad \text{and} \quad K = \Delta \cap \Sigma_{\mathcal{S}}$

• Suppose *E* is center subspace of $A = (DF)_{X_0}|W$, and

 $\dim \operatorname{Fix}_E(K) = 2$

Synchrony Breaking: Nonlinear

 Assume synchrony-breaking Hopf bifurcation occurs. Let

 $\Delta \subset \Sigma_{\mathcal{S}} \times \mathbf{S}^1 \quad \text{and} \quad K = \Delta \cap \Sigma_{\mathcal{S}}$

• Suppose *E* is center subspace of $A = (DF)_{X_0}|W$, and

 $\dim \operatorname{Fix}_E(K) = 2$

Then generically there exist periodic solutions of form

 $u(t) = w(t) + v(t) \in W \oplus \operatorname{Fix}(\Sigma_{\mathcal{S}})$

where

- v(t) is synchronous on K orbits of cells in S, and
- w(t) has Δ spatio-temporal symmetry on cells in \mathcal{S}

Four-Cells with Z_3 -Interior Symmetry

Synchrony-breaking Hopf in

Four-Cells with Z_3 -Interior Symmetry

Four-Cells with Z_3 -Interior Symmetry

• Lower panel shows hidden rotating wave in time series $x_1 - x_2$ $x_2 - x_3$ $x_3 - x_1$

Bifurcation Summary

Synchrony breaking bifurcations: differences due to

- partial synchrony (quotient networks)
- interior symmetry
- network architecture
- Patterns of oscillations at bifurcation due to network architecture
- Two-color patterns